Inorg. Chem. 2007, 46, 3623-3631

Boron and Aluminum Complexes of Sterically Demanding Phosphinimines and Phosphinimides

Silke Courtenay, Denise Walsh, Sarah Hawkeswood, Pingrong Wei, Anjan Kumar Das, and Douglas W. Stephan*

Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received January 9, 2007

Reactions of sterically demanding phosphinimines R₃PNH [R = *i*-Pr (1), *t*-Bu (2)] were examined. Reactions with B(C₆F₅)₃ formed the adducts (R₃PNH)B(C₆F₅)₃ [R = *i*-Pr (3), *t*-Bu (4)] in high yield. On the other hand, **2** reacts with HB(OBu)₂, evolving H₂ to give *t*-Bu₃PNB(OBu)₂ (5). The reaction of 2 equiv of **2** with BH₃•SMe₂ affords the species (*t*-Bu₃PN)₂BH (**6**). In contrast, the reaction of *n*-Bu(*t*-Bu)₂PNH with BH₃•SMe₂ results in the formation of the robust adduct *n*-Bu(*t*-Bu)₂PNH•BH₃ (**8**). An alternative route to borane—phosphinimide complexes involves Me₃SiCl elimination, as exemplified by the reaction of BCl₂Ph with *n*-Bu₃PNSiMe₃, which gives the product *n*-Bu₃PNBCl(Ph) (**9**). The corresponding reactions of the parent phosphinimines **1** and **2** with AlH₃•NMe₂Et give the dimers [(*μ*-*t*-Bu₃PN)AlH₂]₂ (**10**) and [(*μ*-*t*-Bu₃PN)AlH₂]₂ (**11**). Species **11** reacts further with Me₃SiO₃SCF₃ to provide [(*μ*-*t*-Bu₃PN)AlH₂]₂ (**11**). The reaction of f(1) with BCl₃ proceeds smoothly to give *t*-Bu₃PNBCl₂ (**14**), which is readily alkylated to give *t*-Bu₃PNBMe₂ (**15**). Subsequent reaction of **13** in a 2:1 ratio with BCl₃ gives the salt [(*t*-Bu₃PN)₂B]Cl (**17**). This species can be methylated to give (*t*-Bu₃PN)₂BMe (**18**), which undergoes subsequent reaction with [Ph₃C][X] (X = [B(C₆F₅)₄], [PF₆]) to form the related salts [(*t*-Bu₃PN)₂B]-[B(C₆F₅)₄] (**19**) and [(*t*-Bu₃PN)₂B][PF₆] (**20**), respectively. Analogous reactions with [Ph₃C][BF₄] afforded [*t*-Bu₃PN)₂B]-[PK₆] (**21**). Compounds **3**, **4**, **6**, **8**, **11**, **12**, **17**, **19**, and **21** were characterized by X-ray crystallography.

Introduction

Transition-metal complexes incorporating phosphinimide ligand complexes have proven to be an active area of research in recent years. While Cavell and co-workers have made a number of reports on the extremely interesting carbenoid complexes for a variety of metals derived from the phosphinimines of 1,1-diphosphinomethanes,¹⁻⁴ we have probed the chemistry of a variety of metal phosphinimide complexes, ultimately developing commercially viable early-transition-metal catalysts for olefin polymerization based on titanium phosphinimides. This latter work has been recently re-

10.1021/ic0700351 CCC: \$37.00 © 2007 American Chemical Society Published on Web 03/23/2007

viewed.⁵ In contrast, the related chemistry of main-group phosphinimines and phosphinimides has recently drawn much less attention. Dehnicke and Weller described much of the older literature in a review nearly 10 years ago.⁶ More recently, we and others have begun to examine main-group phosphinimine and phosphinimide derivatives. For example, in some elegant work, Meyer and co-workers^{7,8} have demonstrated that phosphinimines themselves undergo metathesis with imines and catalyze imine/imine and imine/ carbodiimine cross-metathesis. We have probed the synthesis, structure, and reactivity of lithium,⁹ magnesium,^{10,11} silicon, tin, and germanium¹² as well as aluminum alkyl¹³ phosphin-

- (5) Stephan, D. W. Organometallics 2005, 24, 2548.
- (6) Dehnicke, K.; Weller, F. Coord. Chem. Rev. 1997, 158, 103.
- (7) Bell, S. A.; Meyer, T. Y.; Geib, S. J. J. Am. Chem. Soc. 2002, 124, 10698.
- (8) Burland, M. C.; Meyer, T. Y. Inorg. Chem. 2003, 42, 3438.
- (9) Courtenay, S.; Wei, P.; Stephan, D. W. Can. J. Chem. 2003, 81, 1471.
- (10) Wei, P.; Stephan, D. W. Organometallics 2003, 22, 601.
- (11) Hollink, E.; Wei, P.; Stephan, D. W. Can. J. Chem. 2005, 83, 430.
- (12) Courtenay, S.; Ong, C. M.; Stephan, D. W. Organometallics 2003, 22, 818.

^{*} To whom correspondence should be addressed. E-mail: stephan@uwindsor.ca. Fax: 519-973-7098.

Aparna, K.; Babu, R. P. K.; McDonald, R.; Cavell, R. G. Angew. Chem., Int. Ed. 2001, 40, 4400.

⁽²⁾ Babu, R. P. K.; McDonald, R.; Cavell, R. G. Chem. Commun. 2000, 6, 481.

⁽³⁾ Kasani, A.; Babu, R. P. K.; McDonald, R.; Cavell, R. G. Angew. Chem., Int. Ed. 1999, 38, 1483.

⁽⁴⁾ Kasani, A.; McDonald, R.; Cavell, R. G. Chem. Commun. 1999, 1993.

imide derivatives. Our interest in the group 3 phosphinimine and phosphinimide chemistry has prompted continuing investigations. Boron phosphinimide derivatives of sterically less demanding phosphinimides including such compounds as [(Et₃PN)₂B)₂]^{2+,14} [(Et₃PNBH)₃]^{3+,15} [(Et₃PNBH)₄NPEt₃]^{3+,16} or [(Ph₃PN)₃B]¹⁷ have been described by Dehnicke and Weller. Known aluminum phosphinimides exhibit dimeric structures exclusively.^{6,13} Recently, we probed steric effects that control the reactions of catechol and pinachol boranes with phosphinimines.^{18,19} In these cases, both monomeric and dimeric complexes, such as R₃PNB(O₂C₂Me₄) and [R₃PNB- $(O_2C_6H_4)]_2$, were prepared as a result of the incorporation of sterically demanding phosphinimide ligands (Chart 1). We have also previously communicated a case where such large steric demands prompt the spontaneous formation of the salt [(t-Bu₃PN)₂B]Cl.²⁰ In this present full report, we include this latter chemistry and related work, exploring several synthetic pathways to both boron and aluminum complexes with sterically demanding phosphinimine and phosphinimide ligands. The range of products is described, and in selected cases, the chemistry of the resulting species is also probed.

Experimental Section

General Data. All preparations were performed under an atmosphere of dry O_2 -free N_2 employing either Schlenk-line techniques or a Vacuum Atmospheres inert-atmosphere glovebox.

- (13) Ong, C. M.; McKarns, P.; Stephan, D. W. Organometallics **1999**, 18, 4197.
- (14) Moehlen, M.; Neumuller, B.; Faza, N.; Muller, C.; Massa, W.; Dehnicke, K. Z. Anorg. Allg. Chem. **1997**, 623, 1567.
- (15) Möhlen, M.; Neumüller, B.; Harms, K.; Krautscheid, H.; Fenske, D.; Diedenhofen, M.; Frenking, G.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 1105.
- (16) Möhlen, M.; Neumüller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. **1999**, 625, 197.
- (17) Moehlen, M.; Neumueller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 177.
- (18) Hawkeswood, S.; Stephan, D. W. Dalton Trans. 2005, 2182.
- (19) Hawkeswood, S.; Wei, P.; Gauld, J. W.; Stephan, D. W. *Inorg. Chem.* **2005**, *44*, 4301.
- (20) Courtenay, S.; Mutus, J. Y.; Schurko, R. W.; Stephan, D. W. Angew. Chem., Int. Ed. 2002, 41, 498–501.

Solvents were purified by employing Grubbs-type column systems manufactured by Innovative Technologies or were distilled from the appropriate drying agents under N2. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker Avance 300 and 500 spectrometers operating at 300 and 500 MHz, respectively. Deuterated benzene, toluene, and methylene chloride were purchased from Cambridge Isotopes Laboratories, freeze-pump-thaw-degassed (three times), and vacuum distilled from the appropriate drying agents. Trace amounts of protonated solvents were used as references, and ¹H and ¹³C{¹H} NMR chemical shifts are reported relative to SiMe₄. ³¹P{¹H}, ¹¹B{¹H}, ²⁷Al{¹H}, and ¹⁹F NMR spectra were referenced to external 85% H₃PO₄, BF₃•Et₂O, AlCl₃ in H₂O, and CFCl₃, respectively. Combustion analyses were performed at the University of Windsor Chemical Laboratories employing a Perkin-Elmer CHN analyzer. R₃PNH [R = *i*-Pr (1), *t*-Bu (2)]²¹ and [*t*-Bu₃PNLi]₄⁹ (13) were prepared by published methods. $n-Bu(t-Bu)_2PNH$ (7) was prepared via the method previously described, with the appropriate replacement of the precursor phosphine.²¹

Synthesis of $(R_3PNH)B(C_6F_5)_3$ [R = *i*-Pr (3), *t*-Bu (4)]. These complexes were prepared in a similar manner, and thus only a single representative preparation is described. To a solution of 2 (250 mg, 1.150 mmol) in 5 mL of CH_2Cl_2 was added $B(C_6F_5)_3$ (589 mg, 1.150 mmol). The solution was stirred for 1 h and concentrated, resulting in the formation of colorless crystals of 4 in 95% yield. 3. Yield: 93%. ¹H NMR (CD₂Cl₂): 2.97 (s, br, 1H), 2.17 (m, 3H), 1.20 (dd, ${}^{3}J_{P-H} = 16$ Hz, ${}^{3}J_{H-H} = 7$ Hz, 18H). ${}^{13}C{}^{1}H$ NMR (CD₂-Cl₂): 147.0–135.8 (br m), 25.7 (d, ${}^{1}J_{P-C} = 55$ Hz), 17.5 (s). ${}^{31}P$ -{¹H} NMR (CD₂Cl₂): 64.0. ¹¹B{¹H} NMR (CD₂Cl₂): -7.5 (s). ¹⁹F NMR (CD₂Cl₂): -55.4 (d, ${}^{3}J_{F-F} = 20$ Hz, 6F), -83.0 (t, ${}^{3}J_{F-F}$ = 20 Hz, 3F), -87.8 (m, 6F). Anal. Calcd for C₂₇H₂₂BF₁₅NP: C, 45.34; H, 3.10; N, 1.96. Found: C, 44.98; H, 3.18; N, 1.88. 4. ¹H NMR (CD₂Cl₂): 3.30 (s, br, 1H), 1.41 (d, ${}^{3}J_{P-H} = 14$ Hz, 27 H). ¹³C{¹H} NMR (CD₂Cl₂): 149.9–135.6 (br m), 41.0 (d, ${}^{1}J_{P-C} =$ 42 Hz), 29.4 (s). ³¹P{¹H} NMR (CD₂Cl₂): 78.8. ¹¹B{¹H} NMR (CD_2Cl_2) : -9.5 (s). ¹⁹F NMR (CD_2Cl_2) : -51.4 (d, ³ $J_{F-F} = 11$ Hz, 6F), -82.8 (t, ${}^{3}J_{F-F} = 21$ Hz, 3F), -87.9 (m, 6F). Anal. Calcd for C₃₀H₂₈BF₁₅NP: C, 49.41; H, 3.87; N, 1.92. Found: C, 49.16; H, 4.08; N, 2.07.

Synthesis of t-Bu₃PNB(OBu)₂ (**5).** To a solution of **2** (30 mg, 0.138 mmol) in 5 mL toluene was added a solution of HB(OBu)₂ (46 μ L, 3 M in THF, 0.138 mmol). The solution was stirred overnight, and the solvent was evaporated, leaving the product as a fine white powder in 95% yield. ¹H NMR (C₆D₆): 4.17 (t, ³J_{H-H} = 6 Hz, 4H), 1.90 (m, 4H), 1.57 (m, 4H) 1.30 (d, ³J_{P-H} = 13 Hz, 27H), 0.97 (t, ³J_{H-H} = 7 Hz, 6H). ¹³C{¹H} NMR (C₆D₆): 63.6 (s), 40.6 (d, ¹J_{P-C} = 52 Hz), 35.4 (s), 30.0 (s), 20.3 (s), 14.7 (s). ³¹P-{¹H} NMR (C₆D₆): 38.4. ¹¹B{¹H} NMR (C₆D₆): 17.1. Anal. Calcd for C₂₀H₄₅BNO₂P: C, 64.34; H, 12.15; N, 3.75. Found: C, 64.20; H, 12.02; N, 3.71.

Synthesis of (*t*-Bu₃PN)₂BH (6). To a solution of 2 (150 mg, 0.690 mmol) in toluene (10 mL) was added BH₃·SMe₂ (173 μ L, 2 M in diethyl ether). The resulting suspension was refluxed for 1 h and cooled to 25 °C, and the solvent was removed in vacuo. The product was isolated as a white powder in 75% yield. Uptake of the powder in a minimum amount of toluene and addition of a couple of drops of hexane resulted in isolation of X-ray-quality crystals. ¹H NMR (C₆D₆) partial: 1.37 (d, ³J_{P-H} =12 Hz, 54H). ¹³C{¹H} NMR (C₆D₆): 40.8 (d, ¹J_{P-C} = 50 Hz), 30.5 (s). ³¹P{¹H} NMR (C₆D₆): 31.2. ³¹P{¹H} NMR (CD₂Cl₂): 35.4. ¹¹B{¹H} NMR

⁽²¹⁾ Stephan, D. W.; Stewart, J. C.; Guerin, F.; Courtenay, S.; Kickham, J.; Hollink, E.; Beddie, C.; Hoskin, A.; Graham, T.; Wei, P.; Spence, R. E. v. H.; Xu, W.; Koch, L.; Gao, X.; Harrison, D. G. Organometallics 2003, 22, 1937.

 (C_6D_6) : 24.6 (br). Anal. Calcd for $C_{24}H_{55}BN_2P_2$: C, 64.86; H, 12.47; N, 6.30. Found: C, 64.20; H, 12.82; N, 5.96.

Synthesis of *n***-Bu**(*t*-**Bu**)₂**PNH·BH**₃ (8). To a solution of phosphinimine 7 (0.150 g, 0.690 mmol) in 10 mL of hexane was added BH₃·SMe₂ (2 M, 0.173 mL, 0.345 mmol) in diethyl ether. The solution was stirred for 4 h and filtered. X-ray-quality crystals were collected from the hexane supernatant kept at -30 °C. Yield: 87%. ¹H NMR (C₆D₆): 1.76 (m, 2H), 1.60 (m, 2H), 0.1.26 (sextet, 2H, $^{3}J_{H-H} = 7$ Hz), 0.89 (d, 18H, $^{3}J_{P-H} = 14$ Hz), 0.84 (t, 3H, $^{3}J_{H-H} = 8$ Hz). $^{31}P{}^{1}H{}$ NMR (C₆D₆): 61.6. $^{13}C{}^{1}H{}$ NMR (C₆D₆): 27.7, 25.8 (d, $^{3}J_{P-C} = 19$ Hz), 25.5 (d, $^{2}J_{P-C} = 26$ Hz), 19.0 (d, $^{1}J_{P-C} = 30$ Hz), 14.1. $^{11}B{}^{1}H{}$ NMR (C₆D₆): -21.0. Anal. Calcd: C, 62.35; H, 13.52; N, 6.06. Found: C, 62.02; H, 13.22; N, 5.90.

Synthesis of *n***-Bu**₃**PNBCl(Ph)** (9). A solution of BCl₂Ph (0.2 mL, 1.542 mmol) in 5 mL of toluene was slowly added via syringe to a solution of *n*-Bu₃PNSiMe₃ (0.446 g, 1.541 mmol) in 35 mL of toluene. The Schlenk flask was put under a static vacuum and stirred for 72 h. The solvent was removed in vacuo, and the remaining white solid was washed with *n*-pentane. ¹H NMR (C₆D₆): 8.72 (d, 2H, ${}^{3}J_{H-H} = 7$ Hz), 7.47 (t, 2H, ${}^{3}J_{H-H} = 7$ Hz), 7.28 (t, ${}^{3}J_{H-H} = 7$ Hz), 1.60 (m, 6H), 1.22 (m, 6H), 1.02 (tq, 6H, ${}^{3}J_{H-H} = 7$ Hz, ${}^{3}J_{H-H} = 7$ Hz), 0.73 (t, 9H, ${}^{3}J_{H-H} = 7$ Hz). ${}^{31}P{}^{1}H{}$ NMR (C₆D₆): 39.8. ${}^{13}C{}^{1}H{}$ NMR (C₆D₆): 135.0, 127.6, 127.1, 24.7, 24.1, 23.8, 14.0. {}^{11}B{}^{1}H{} NMR (C₆D₆): 11.0. Anal. Calcd: C, 63.64; H, 9.50; N, 4.12. Found: C, 63.39; H, 9.73; N, 4.08.

Synthesis of $[(\mu - R_3 PN)AlH_2]_2$ [R = *i*-Pr (10), *t*-Bu (11)]. These compounds were prepared in a similar fashion, and thus only one preparation is detailed. To a solution of 1 (2.036 g, 11.620 mmol) in 40 mL of toluene was added 23.22 mL of a 0.5 M solution of AlH₃•NMe₂Et in toluene. Gas evolution was observed upon the addition of the alane complex. The solution was stirred for 16 h, after which the solution was reduced to a white slurry in vacuo, followed by the addition of 20 mL of pentane. The resulting mixture was filtered, and a fine white powder was collected, washed with 5 mL of pentane, and dried in vacuo in 79% yield. 10. ¹H NMR (C_6D_6) : 1.98 (d of sept, 6H, ${}^2J_{P-H} = 11$ Hz, ${}^3J_{H-H} = 3$ Hz), 1.11 (d of d, 36H, ${}^{3}J_{H-H} = 14$ Hz, ${}^{3}J_{H-H} = 7$ Hz). ${}^{31}P{}^{1}H}$ NMR (C₆D₆): 46.6 (s). ¹³C{¹H} NMR (C₆D₆): 26.9 (d, ¹ $J_{P-C} = 62$ Hz), 17.6 (s). ²⁷Al{¹H} NMR (C₆D₆): 122.5 (br). Anal. Calcd for C₁₈H₄₆-Al₂N₂P₂: C, 53.19; H, 11.41; N, 6.89. Found: C, 53.05; H, 11.39; N, 6.49. 11. Yield: 80%. Some of the white powder was dissolved in minimal amounts of toluene and stored at -33 °C in which X-ray-quality crystals were grown. ¹H NMR (C_6D_6): 1.43 (d, 54H, ${}^{3}J_{P-H} = 13$ Hz). ${}^{31}P{}^{1}H}$ NMR (C₆D₆): 58.0 (s). ${}^{13}C{}^{1}H$ NMR (C₆D₆): 42.2 (d, ${}^{1}J_{P-C} = 62$ Hz), 30.9 (s). ${}^{27}Al{}^{1}H$ NMR (C₆D₆): 120.4 (br). Anal. Calcd for C₂₄H₅₈Al₂N₂P₂: C, 58.75; H, 11.92; N, 5.71. Found: C, 58.21; H, 12.06; N, 5.10.

Synthesis of $[(\mu$ -*t*-Bu₃PN)AlH(O₃SCF₃)]₂ (12). To a solution of 11 (2.00 g, 4.07 mmol) in 20 mL of toluene was added 2.17 g of Me₃SiO₃SCF₃. The solution was stirred for 16 h, during which time a white precipitate formed. The precipitate was allowed to settle, and the solvent was decanted off. The white solid was washed with 2 mL of pentane and dried in vacuo. A white fine powder was isolated in 82% yield. ¹H NMR (CD₃CN): 1.49 (d, 54H, ³J_{P-H} = 14 Hz). ³¹P NMR (CD₃CN): 72.2 (s). ¹³C{¹H} NMR (CD₃CN): 29.3 (s), 1.8 (q, J_{F-C} = 21 Hz), 1.7 (q, J_{F-C} = 21 Hz), (d, ¹J_{P-C} = Hz), (s). ¹⁹F{¹H} NMR: -78.9. ²⁷Al{¹H} NMR (CD₃CN): 69.9 (br). Anal. Calcd for C₂₆H₅₆Al₂F₆N₂P₂O₆S₂: C, 39.69; H, 7.17; N, 3.56. Found: C, 40.01; H, 7.39; N, 3.72.

Synthesis of t-Bu₃PNBCl₂ (14). To a suspension of **13** (150 mg, 0.672 mmol) in 10 mL of ether was added a solution of BCl₃ (225 μ L, 1 M solution in heptane, 0.225 mmol). The resulting white

suspension was stirred overnight, and then the solvent was evaporated. The product was dissolved in toluene, filtered, and dried in vacuo, resulting in isolation of **14** in 78% yield. ¹H NMR (C₆D₆): 1.14 (d, ³*J*_{P-H} = 14 Hz, 27H). ¹³C{¹H} NMR (C₆D₆): 39.8 (d, ¹*J*_{P-C} = 52 Hz), 28.8 (s). ³¹P{¹H} NMR (C₆D₆): 41.7. ¹¹B{¹H} NMR (C₆D₆): 20.3 (br, s). Anal. Calcd for C₁₂H₂₇BCl₂NP: C, 48.36; H, 9.13; N, 4.70. Found: C, 48.19; H, 9.01; N, 4.31.

Synthesis of t-Bu₃PNBMe₂ (15). To a solution of **14** (75 mg, 0.252 mmol) in 5 mL of toluene was added MeMgBr (168 μ L, 3 M solution in ether, 0.504 mmol). The resulting white suspension was stirred for 1 h and filtered, and the solvent was evaporated, isolating the product as a white powder in 64% yield. ¹H NMR (C₆D₆): 1.17 (d, ³*J*_{P-H} = 13 Hz, 27H), 0.87 (s, 6H). ¹³C{¹H} NMR (C₆D₆): 40.3 (d, ¹*J*_{P-C} = 53 Hz), 29.9 (s), 26.5 (s). ³¹P{¹H} NMR (C₆D₆): 31.1. ¹¹B{¹H} NMR (C₆D₆): 45.0 (br s). Anal. Calcd for C₁₄H₃₃BNP: C, 65.38; H, 12.93; N, 5.45. Found: C, 64.81; H, 12.02; N, 5.21.

Synthesis of [*t*-**Bu**₃**PNBMe**]₂[(**MeB**(**C**₆**F**₅)₃)]₂ (**16**). To a solution of **15** (20 mg, 0.08 mmol) in 2 mL of CD₂Cl₂ was added B(C₆F₅)₃ (40 mg, 0.08 mmol). A white suspension formed instantly. Removal of the solvent resulted in isolation of the product in >95% yield. ¹H NMR (C₆D₆): 1.52 (d, ³*J*_{P-H} = 15 Hz, 27H), 1.18 (s, 3H), 0.46 (br, 3H). ¹³C{¹H} NMR (C₆D₆): 150.0, 148.0, 139.2, 137.3 (br s), 40.9 (d, ¹*J*_{P-C} = 54 Hz), 31.7 (s), 30.3 (s), 27.9 (s). ³¹P{¹H} NMR (C₆D₆): 63.0. ¹¹B{¹H} NMR (C₆D₆): 23.0 (br s), -19.1 (s). ¹⁹F NMR (CD₂Cl₂): -55.9 (d, ³*J*_{F-F} = 21 Hz, 6F), -88.1 (m, 3F), -90.7 (t, ³*J*_{F-F} = 23 Hz). Anal. Calcd for C₃₂H₃₃B₂F₁₅NP: C, 49.97; H, 4.32; N, 1.82. Found: C, 49.72; H, 3.90; N, 1.61.

Synthesis of [(*t*-**Bu**₃**PN**)₂**B**]**Cl** (17). To a suspension of 5 (100 mg, 0.448 mmol) in toluene (10 mL) was added BCl₃ (0.224 mmol, 224 μ L, 1 M in heptane). The resulting white suspension was refluxed overnight, the solvent evaporated, the product dissolved in toluene, and the solution filtered. Compound 17 crystallized in 72% yield. ¹H NMR (CD₂Cl₂): 1.46 (d, ³*J*_{P-H} = 14 Hz, 54H). ¹³C-{¹H} NMR (CD₂Cl₂): 40.7 (d, ¹*J*_{P-C} = 48 Hz), 29.3 (s). ³¹P{¹H} NMR (CD₂Cl₂): 55.7. ¹¹B{¹H} NMR (CD₂Cl₂): 11.9 (br). ¹H NMR (C₆D₆): 1.35 (d, ³*J*_{P-H} = 13 Hz, 54H). ¹³C{¹H} NMR (C₆D₆): 41.0 (d, ¹*J*_{P-C} = 53 Hz), 30.2 (s). ³¹P{¹H} NMR (C₆D₆): 28.5. ¹¹B{¹H} NMR (C₆D₆): -6.1 (br). Anal. Calcd for C₂₄H₅₄BClN₂P₂: C, 60.19; H, 11.37; N, 5.85. Found: C, 59.66; H, 11.80; N, 5.47.

Synthesis of (*t*-**Bu**₃**PN**)₂**BMe** (18). To a suspension of 16 (25 mg, 0. 052 mmol) in 2 mL of toluene was added MeLi (40 μ L, 1.4 M solution in ether, 0.056 mmol). The resulting white suspension was stirred over night, filtered and the solvent was evaporated. The product was isolated as a white powder in 69% yield. ¹H NMR (C₆D₆): 1.34 (d, ³*J*_{P-H} = 13 Hz, 54H), 0.9 (s, 3 H). ¹³C{¹H} NMR (C₆D₆): 20.1 (s). ¹¹B{¹H} NMR (C₆D₆): 29.8 (br). Anal. Calcd for C₂₅H₅₇BN₂P₂: C, 52.02; H, 9.95; N, 4.85. Found: C, 51.81; H, 9.75; N, 4.96.

Synthesis of $[(t-Bu_3PN)_2B][B(C_6F_5)_4]$ (19) and $[(t-Bu_3PN)_2B]$ -[PF₆] (20). These complexes were prepared in a similar manner, and thus only a single representative preparation is described. To a solution of **17** (320 mg, 0.720 mmol) in CH₂Cl₂ (5 mL) was added [Ph₃C][B(C₆F₅)₄] (664 mg, 0.720 mmol). The solution was stirred overnight, the solvent removed in vacuo, and the resulting white powder washed with hexane (2 × 1 mL) and toluene (1 mL). This afforded **19** as a white powder in 65% yield. Uptake of the powder in a minimum amount of toluene and addition of a couple of drops of hexane resulted in isolation of X-ray-quality crystals. **19**. ¹H NMR (C₆D₆): 1.46 (d, ³J_{P-H} = 14 Hz, 54H). ¹³C{¹H} NMR (C₆D₆): 150.4–135.2 (br), 40.8 (d, ¹J_{P-C} = 48 Hz), 29.3 (s). ³¹P-{¹H} NMR (C₆D₆): 55.0 (s). ³¹P{¹H} NMR (CD₂Cl₂): 55.8 (s).

	3	4	8	11	12	21
formula	C27H22BF15NP	C30H28BF15NP	C ₁₂ H ₃₁ BNP	$C_{24}H_{58}Al_2N_2P_2$	$C_{26}H_{56}Al_2F_6N_2O_6P_2S_2$	$C_{24}H_{54}B_2F_4N_2P_2$
fw	687.24	729.31	231.16	490.62	786.75	530.25
cryst syst	monoclinic	monoclinic	triclinic	tetragonal	triclinic	tetragonal
space group	P2(1)/n	P2(1)/c	$P\overline{1}$	$Pa\overline{3}$	$P\overline{1}$	$Pa\overline{3}$
a (Å)	12.331(14)	11.384(18)	8.212(5)	14.486(4)	13.640(8)	14.298(4)
b (Å)	18.87(2)	12.84(2)	8.397(5)		17.599(10)	
<i>c</i> (Å)	12.398(14)	21.46(4)	11.678(6)		19.094(11)	
α (deg)			84.132(12)		112.843(11)	
β (deg)	98.320(16)	91.77(4)	85.683(10)		108.234(12)	
γ (deg)			85.338(10)		90.847(12)	
$V(Å^3)$	2855(6)	3135(9)	796.7(8)	3039.5(14)	3963(4)	2922.9(16)
Ζ	4	4	2	4	4	4
$d(\text{calc}), \text{g cm}^{-1}$	1.599	1.545	0.964	1.072	1.319	1.205
abs coeff μ , cm ⁻¹	0.215	0.200	0.149	0.214	0.325	0.190
data collected	11 220	13 287	3401	12 178	17 049	3111
data $F_0^2 > 3\sigma(F_0^2)$	4055	4451	2262	732	11283	644
variables	406	433	152	56	845	61
R	0.0635	0.0499	0.0551	0.0482	0.0695	0.0588
$R_{ m w}$	0.1378	0.1234	0.1516	0.1423	0.1662	0.1571
GOF	1.082	0.979	1.013	1.058	0.855	1.047

¹¹B{¹H} NMR (C₆D₆): 11.1 (br), -20.8 (s). ¹⁹F{¹H} NMR (CD₂-Cl₂): -133.4 (s), -164.1 (pst, ${}^{3}J_{F-F} = 18$ Hz), -167.9 (s). Anal. Calcd for C₄₈H₅₄B₂F₂₀N₂P₂: C, 51.36; H, 4.84; N, 2.50. Found: C, 51.62; H, 4.94; N, 2.33. **20**. Yield: 66%. ¹H NMR (CD₂Cl₂): 1.47 (d, ${}^{3}J_{P-H} = 14$ Hz, 54H). ¹³C{¹H} NMR (CD₂Cl₂): 40.8 (d, ${}^{1}J_{P-C} = 48$ Hz), 29.2 (s). ³¹P{¹H} NMR (CD₂Cl₂): 55.9 (s), -144.0 (sept, ${}^{1}J_{P-F} = 707$ Hz). ¹¹B{¹H} NMR (CD₂Cl₂): -3.9(s). ¹⁹F NMR (CD₂Cl₂): 3.8 (d, ${}^{1}J_{F-P} = 710$ Hz). Anal. Calcd for C₂₄H₅₄-BF₆N₂P₃: C, 48.99; H, 9.24; N, 4.76. Found: C, 48.59; H, 9.34; N, 4.27.

Synthesis of $[(\mu$ -*t*-Bu₃PN)₂BF₂]₂ (21). To a solution of 17 (50 mg, 0.104 mmol) in 2 mL of CH₂Cl₂ was added Ph₃CBF₄ (34 mg, 0.103 mmol). The resulting red solution was stirred for 2 h, during which time the color disappeared. The solvent was evaporated, and the resulting white powder was washed with hexane. The product is isolated in 86% yield. X-ray-quality crystals were obtained from a saturated CD₂Cl₂ solution of the compound. ¹H NMR (CD₂Cl₂): 1.49 (d, ³*J*_{P-H} = 14 Hz, 54H). ¹³C{¹H} NMR (CD₂Cl₂): 40.7 (d, ¹*J*_{P-C} = 48 Hz), 29.3 (s). ³¹P{¹H} NMR (CD₂Cl₂): 55.3 (s). ¹¹B-{¹H} NMR (CD₂Cl₂): 11.8 (br). ¹⁹F NMR (CD₂Cl₂): -75.5 (s). Anal. Calcd for C₁₂H₂₇BF₂NP: C, 54.36; H, 10.26; N, 5.28. Found: C, 54.50; H, 10.08; N, 4.96.

Molecular Orbital Computations. All density functional theory (DFT) calculations were performed using the *Gaussian 03* suite of programs.²² The basis set consisted of the B3LYP/6-31g(d) basis set^{23-26} on all atoms. The geometries for the computational models

- (23) Ditchfield, R., Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
- (24) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- (25) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
- (26) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.

were initiated based on the crystallographic results presented herein (Table 1).

X-ray Data Collection and Reduction. Crystals were manipulated and mounted in capillaries in a glovebox, thus maintaining a dry O₂-free environment for each crystal. Diffraction experiments were performed on a Siemens SMART system CCD diffractometer. The data ($4.5^{\circ} < 2\theta < 45-50.0^{\circ}$) were collected in a hemisphere of data in 1329 frames with 10 s exposure times. The observed extinctions were consistent with the space groups in each case. A measure of decay was obtained by re-collecting the first 50 frames of each data set. The intensities of the reflections within these frames showed no statistically significant change over the duration of the data collections. The data were processed using the *SAINT* and *SHELXTL* processing packages. An empirical absorption correction based on redundant data was applied to each data set. Subsequent solution and refinement was performed using the *SHELXTL* solution package.

Structure Solution and Refinement. Non-H atomic scattering factors were taken from the literature tabulations.²⁷ The heavyatom positions were determined using direct methods, employing the SHELXTL direct methods routine. The remaining non-H atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on F^2 , minimizing the function $\omega (F_0 - F_c)^2$, where the weight ω is defined as $4F_o^2/2\sigma(F_o^2)$ and F_o and F_c are the observed and calculated structure factor amplitudes, respectively. In the final cycles of each refinement, all non-H atoms were assigned anisotropic temperature factors in the absence of disorder or insufficient data. In the latter cases, atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the C to which they are bonded, assuming a C-H bond length of 0.95 Å. H-atom temperature factors were fixed at 1.10 times the isotropic temperature factor of the C atom to which they are bonded. The H-atom contributions were calculated but not refined. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of no chemical significance. Additional details are provided in the Supporting Information.

⁽²²⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D. K. K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 03*; Gaussian, Inc.: Pittsburgh, PA, 2001.

⁽²⁷⁾ Cromer, D. T.; Waber, J. T. Int. Tables X-Ray Crystallogr. 1974, 4, 71.

Scheme 1

Discussion

We have previously described the formation of the phosphinimine adduct (Me₃PNSiMe₃)B(C_6F_5)₃ in which the N-B bond is typical of a Lewis acid-base interaction.¹² In contrast, sterically demanding (trimethylsilyl)phosphinimines react with $B(C_6F_5)_3$, resulting in the abstraction of a methyl group from Si to give species such as [R₃PNSiMe₂(N(PR₃)-SiMe₃][MeB(C₆F₅)₃] (R = *i*-Pr, Ph) and $[(\mu$ -*t*-Bu₃PN)SiMe₂]- $[MeB(C_6F_5)_3]^{.12}$ In probing of the reactivity of the parent phosphinimines, the corresponding reactions of R₃PNH [R = i-Pr (1), t-Bu (2)] with B(C₆F₅)₃ were investigated. These reactions proceed under mild conditions and in a facile fashion to form the white crystalline adducts (R₃PNH)B- $(C_6F_5)_3$ [R = *i*-Pr (3), *t*-Bu (4)] in yields of 93 and 95%, respectively (Scheme 1). The ¹H, ¹³C{¹H}, and ¹⁹F NMR spectra of compound 3 are as expected, with a ¹H NMR resonance attributable to the NH proton at 2.97 ppm. The ³¹P{¹H} NMR resonance is shifted downfield to 64.0 ppm, consistent with coordination of B to N. The ¹¹B{¹H} NMR signal is seen at -7.5 ppm, typical of four-coordinate B centers. In a similar sense, compound 4 gives rise to a ¹H NMR resonance at 3.30 ppm from the NH group and ³¹P- ${^{1}H}$ and ${^{11}B}{^{1}H}$ NMR signals at +78.8 and -9.5 ppm, respectively. The formulations of these phosphinimineborane adducts were unambiguously confirmed via X-ray crystallography (Figures 1 and 2). The B-N distances in 3 and 4 were found to 1.584(8) and 1.614(4) Å, respectively. The longer B-N distance in 4 is attributed to the steric demands of the tert-butyl substituents. Notably, the P-N distances of 1.620(5) and 1.649(3) Å and the B-N-P angles of $144.1(4)^{\circ}$ and $148.70(17)^{\circ}$ in **3** and **4**, respectively, also reflect the influence of the greater steric demands in 4.

The parent phosphinimine **2** reacts with HB(OBu)₂, with evolution of H₂ ultimately affording the fine white powder **5** in 95% yield. This product **5** exhibits a ³¹P{¹H} NMR signal at 38.4 ppm as well as a ¹¹B{¹H} NMR resonance at 17.1 ppm. These data are consistent with the formulation of **5** as *t*-Bu₃PNB(OBu)₂, in which the B center is three-coordinate (Chart 1). Despite repeated efforts, this could not be confirmed by X-ray crystallography because efforts to obtain suitable crystals were unsuccessful. Nonetheless, this

Figure 1. POV-ray drawing of **3**. Color code: C, black; N, light blue; B, blue; P, orange; F, pink; H, gray. H atoms except for the NH are omitted for clarity. Selected distances (Å) and angles (deg): P–N 1.620(5), N–B 1.584(8), B–N–P 144.1(4).

Figure 2. POV-ray drawing of **4**. Color code: C, black; N, light blue; B, blue; P, orange; F, pink; H, gray. H atoms except for the NH are omitted for clarity. Selected distances (Å) and angles (deg): P–N 1.649(3), N–B 1.614(4), B–N–P 148.70(17).

Figure 3. POV-ray drawing of **6**. Color code: C, black; N, light blue; B, blue; P, orange. H atoms are omitted for clarity. Selected distances (Å) and angles (deg): P–N 1.535(7), B–N 1.41(5), N–B–N 117(2), B–N–P 148.2(16).

species is thought to be structurally analogous to the previously reported t-Bu₃PNB(O₂C₂Me₄).¹⁹

In a similar protonolysis reaction, 2 equiv of **2** with BH₃· SMe₂ under reflux afforded the white powder **6** in 75% yield (Scheme 1). Similar to **5**, the ³¹P{¹H} NMR resonance of **6** was at 31.2 ppm and the ¹¹B{¹H} NMR signal at 24.6 ppm; nonetheless, the data did not provide an unambiguous formulation. A single-crystal X-ray diffraction study of **6** confirmed this formulation as (*t*-Bu₃PN)₂BH (Figure 3).²⁰ The structural refinement shows a 6-fold disorder of a B atom about the center of the -3 symmetry. The N–B–N bend is approximately 117(2)°, while the angle at P–N–B

Figure 4. POV-ray drawing of **8**. Color code: C, black; N, light blue; B, blue; P, orange. H atoms except for the BH and NH hydrogens are omitted for clarity. Selected distances (Å) and angles (deg): P-N 1.592(3), N-B 1.580(5), B-N-P 130.6(3).

is $148.2(2)^{\circ}$. The P-N and B-N distances are 1.535(7) and 1.41(5) Å, respectively.

A similar reaction of 1 equiv of the phosphinimine 7 with BH₃·SMe₂ resulted in the formation of X-ray-quality crystals of 8 in 87% yield. The ¹H NMR spectrum shows a signal at 0.84 ppm attributable to three BH protons. The dramatic downfield shift of the ³¹P{¹H} NMR resonance to 61.6 ppm and the ¹¹B{¹H} NMR chemical shift of -21.0 ppm suggest the formulation of 8 as n-Bu(t-Bu)₂PNH·BH₃ (Scheme 1). This formulation was unambiguously confirmed via a crystallographic study of 8 (Figure 4). Interestingly, the P-N and N-B distances in 8 of 1.592(3) and 1.580(5) Å, respectively, are significantly shorter than those seen in the $B(C_6F_5)_3$ adducts, **3** and **4**. The B-N-P angle in **8** was found to be $130.6(3)^\circ$, which is also significantly smaller than those seen in 3 and 4. These findings are consistent with the weaker Lewis acidity and steric demands of BH₃ versus $B(C_6F_5)_3$. Compound 8 was formed even in the presence of 2 equiv of the phosphinimine 7 and under reflux conditions. This is perhaps surprising because this stands in contrast to the reaction of the phosphinimine 2. This finding suggests that steric demands encourage H₂ elimination. It is noteworthy that steric demands also have been shown to impact the reactions of phosphinimines R_3PNH with HBpin (pin = O₂C₂Me₄). In these cases, sterically demanding phosphinimines prompted H₂ elimination to give R₃PNBpin, whereas smaller phosphinimines were reduced to give free phosphine and HN(Bpin)₂.^{18,19}

An alternative strategy to borane—phosphinimide complexes is exemplified by the reaction of BCl₂Ph with *n*-Bu₃-PNSiMe₃. Under a static vacuum for 72 h, this reaction proceeds to evolve SiMe₃Cl and, subsequently, to afford the formation of the white solid **9** in near-quantitative yields (Scheme 1). This formulation was consistent with the ¹H and ¹³C{¹H} NMR data as well as the downfield shifts of the ³¹P{¹H} and ¹¹B{¹H} NMR resonances to 39.8 and 11.0 ppm, respectively. Efforts to confirm this crystallographically were unsuccessful because of the inability to obtain X-rayquality crystals despite repeated attempts.

The corresponding reactions of the phosphinimines **1** and **2** with AlH₃•NMe₂Et proceed in a facile fashion with gas evolution, ultimately affording the white solids **10** and **11** in 79 and 80% yield, respectively. While the ¹H and ¹³C-{¹H} NMR data for these compounds were consistent with

Figure 5. POV-ray drawing of **11**. Color code: C, black; N, light blue; Al, rich blue; F, pink; H, gray; P, orange. H atoms are omitted for clarity. Selected distances (Å) and angles (deg): Al–N 1.887(3), Al'–N 1.905(3), P–N 1.598(4), N–Al–N 89.86(19), P–N–Al 134.65(11).

Scheme 2

the presence of the R₃P fragment, the observation of ³¹P-¹H} NMR chemical shifts at 46.6 and 57.8 ppm and ²⁷Al NMR resonances at 122.5 and 120.4 ppm for 10 and 11, respectively, support coordination of phosphinimide to fourcoordinate Al centers. Given that the elemental analysis of these products suggested the empirical formula R₃PNAIH₂, these products were formulated as 10 and 11 (Scheme 2). In the latter case, this formulation was unambiguously confirmed by an X-ray diffraction study (Figure 5). Similar to 6, the crystal packing of 11 is dominated by the t-Bu₃PN ligands, resulting in a disorder of the AlH₂ units. However, in this case, the site occupancy revealed that two Al centers are bridged by the phosphinimide ligands. The Al-N distances were found to range from 1.887(3) to 1.905(3) Å, significantly longer than the B-N distances and yet consistent with typical Al-NPR₃ bridges. The N-Al-N and Al-N-Al' angles in these four-membered rings were determined to be 89.9(2)° and 90.1(2)°, respectively. These values are similar to those previously reported for the species $[(\mu - t - t)]$ Bu₃PN)AlMe₂]₂.¹³ The corresponding P-N distance in **11** was found to be 1.598(4) Å, while the P–N–Al angle was found to be 134.7(1)°. The parameters are also similar to those reported for $[(\mu - t - Bu_3 PN)AlMe_2]_2$ although slightly smaller than those seen in $[(\mu-t-Bu_3PN)AlCl_2]_2$, consistent with the more electron-deficient Al center in 11 and [(μ -t-Bu₃PN)AlMe₂]₂.¹³ It is noteworthy that, despite the fact that 6 and 11 are formed in similar fashions, the former species contains only a single B center while the Al analogue is dimeric. This presumably is attributable to the longer Al-N bond distances that accommodate the bridging phosphinimide motif.

Compound **10** reacts with 2 equiv of Me₃SiO₃SCF₃ to yield a new species **12**, which gives rise to a new ³¹P NMR signal

Figure 6. POV-ray drawing of **12** (one molecule from the asymmetric unit is shown). Color code: C, black; N, light blue; Al, rich blue; O, red; S, yellow; F, pink; H, gray; P, orange. H atoms are omitted for clarity. Selected distances (Å) and angles (deg): A1–O 1.828(4), 1.811(4), A1–N 1.875(5), 1.878(5), 1.866(5), 1.889(5), A1–AI' 2.626(3), P–N 1.612(5), 1.625(5), O–A1–N 107.7(2), 110.3(2), 108.3(2), 110.1(2), N–A1–N 90.9(2), 90.8(2), P–N–Al 135.1(3), 132.9(3).

at 72.2 ppm. This product was isolated in 82% yield (Scheme 2). ¹⁹F NMR confirms the presence of the triflate fragments with a resonance at -78.9 ppm. The nature of 12 was confirmed unambiguously via X-ray crystallography as $[(\mu$ t-Bu₃PN)AlH(OSO₂CF₃)]₂ (Figure 6). Compound **12** is also a dimer in which two phosphinimide ligands bridge two Al centers. However, in addition to one hydride, a triflate group is coordinated through O to Al. The disposition of the triflate groups is pseudo-cis; that is, the two triflate groups are positioned on the same side of the Al₂N₂ core. This orientation presumably is viewed as a steric compromise, yielding lesser triflate-phosphinimide steric conflicts. Because there are two molecules in the asymmetric unit, Al-O distances in 12 were found to range between 1.787(5) and 1.828(4) Å, while the Al-N bond lengths fall in between 1.870(5) and 1.889(5) Å. The O-Al-N angles are approximately tetrahedral, ranging from $107.7(2)^{\circ}$ to $110.3(2)^{\circ}$. The Al₂N₂ cores are approximately square, with N-Al-N angles falling in the narrow range of $90.8(2)-91.0(2)^{\circ}$, while the Al-N-Al angles fall between $88.4(2)^{\circ}$ and $89.1(2)^{\circ}$. These core metrics result in an average Al···Al' distance of 2.624(3) Å. The P–N distances in 12 are longer than those in **11**, ranging from 1.607(5) to 1.625(5) Å, while the corresponding P-N-Al angles were found to vary from $132.9(3)^{\circ}$ to $135.1(3)^{\circ}$. The observation of longer P–N bonds and shorter Al-N distances in 12 compared to 10 supports the notion of a more electron-deficient Al center in 12.

An alternative strategy to complexes containing phosphinimide ligands involves the reactions of the lithium salt 13.⁹ Reaction of 13 with BCl₃ proceeds smoothly to give a white solid 14 in 78% yield (Scheme 3). Coordination of phosphinimide to the B center is indicated by the shift of the ³¹P{¹H} NMR signal to 41.7 ppm and the observation of the ¹¹B NMR resonance at 20.3 ppm. This latter point suggests that 14 contains a three-coordinate B center, while elemental analysis was consistent with the formulation of 14 as *t*-Bu₃PNBCl₂. Derivatization of 14 was accomplished

via the subsequent reaction with MeMgBr, affording the species 15 in 64% isolated yield. The ¹H and ¹³C{¹H} NMR data were consistent with the formulation of 15 as t-Bu₃-PNBMe₂ (Scheme 2). The ${}^{31}P{}^{1}H{}$ NMR resonance of 15 shifts upfield to 31.1 ppm. The presence of a three-coordinate B center in 15 is supported by the downfield ¹¹B NMR signal at 45.0 ppm. Subsequent reaction of 15 with $B(C_6F_5)_3$ results in the formation of 16 in >95% yield. The ${}^{31}P{}^{1}H$ NMR resonance of 16 shifts dramatically upfield to 63.0 ppm. The ¹H NMR spectrum of **16** shows two resonances attributable to B-bound methyl groups at 1.18 and 0.46 ppm, with the corresponding ¹³C NMR resonances at 30.3 and 27.9 ppm. The ¹¹B NMR spectrum of **16** shows two resonances at 23.0 and -19.1 ppm consistent with the presence of both threeand four-coordinate B centers. These data are consistent with the presence of the anion $[MeB(C_6F_5)_3]$ and thus support the formulation of **16** as $[(\mu-t-Bu_3PN)BMe]_2[MeB(C_6F_5)_3]_2$ (Scheme 3). It has been previously shown that, in the related aluminum chemistry, only one methyl group is abstracted from $[Me_2Al(\mu-NPR_3)]_2$ upon reaction with $B(C_6F_5)_3$, affording the dimeric monocation [(Me₂Al(µ-NPR₃)₂AlMe- $(MeB(C_6F_5)_3)]^{.13}$

Reaction of **13** in a 2:1 ratio with BCl₃ in toluene affords after refluxing for 12 h and subsequent isolation a crystalline solid **17** in 72% yield. Compound **17** in CD₂Cl₂ shows a ³¹P{¹H} NMR resonance at 55.7 ppm, and a broad ¹¹B NMR resonance was observed at 11.9 ppm. While these data together with the ¹H and ¹³C NMR spectra confirmed that **17** was distinct from **14**, the nature of **17** could only be confirmed by X-ray crystallography (Figure 7).²⁰ This study showed **17** to be $[(t-Bu_3PN)_2B]Cl.$ As previously communicated, this compound is comprised of the -3 symmetric cation $[(t-Bu_3PN)_2B]^+$ in which the crystallographic symmetry imposes linearity on the N–B–N and P–N–B angles. The Cl⁻ anion sits 7.30 Å from the B center. The B–N distance in **17** is 1.258(5) Å. This is significantly shorter than those seen in B(NPPh₃)₃ [1.446(8) Å],¹⁷ [Fc₂B₂(Br)(μ -

Figure 7. POV-ray drawing of the cation of **17**. Color code: C, black; N, light blue; B, rich blue; P, orange. H atoms are omitted for clarity. Selected distances (Å) and angles (deg): P–N 1.531(5), B–N 1.258(5), N–B–N 180.0(4), B–N–P 180.0(2).

Scheme 4

NPEt₃)₂][Br] [Fc = ferrocenyl; 1.44(1) and 1.57(1) Å],²⁸ [H₃B₃(NPEt₃)₃Cl₂][Br] [1.47(1) Å],²⁹ [HBNPEt₃]₃[I]₃ [1.43(1) Å],³⁰ [Bn(Me₃C)N)₂B][AlCl₄] [1.33(3) Å], and [(Me₂N)B(NC₅H₆Me₄)]⁺ [1.30(4) and 1.42(4) Å],³¹ consistent with the cationic nature of **17**. The P–N bond length in **17** is 1.531(5) Å, typical of main-group phosphinimide derivatives.

The formation of **17** exclusively occurs even in the presence of excess **13**. Smaller phosphinimides have been shown to result in trisubstitution, as is the case in the formation of $B(NPPh_3)_3$.¹⁷ The steric demands present in **17** result in the spontaneous dissociation of halide from the B center. Although bulky amidoborinium ions were reviewed by Kölle and Nöth³¹ two decades ago, the linear geometry of the PNBNP atoms in the cation of **17** is, to our knowledge, the first example of a borinium ion formed spontaneously instead of via halide abstraction with a Lewis acid. The stability of this linear cationic arrangement of five atoms is undoubtedly related to resonance forms that distribute the cationic charge onto the N atoms (Scheme 4).

Compound **17** reacts with MeLi to form a species formulation $(t-Bu_3PN)_2BMe$ (**18**) in 69% yield (Scheme 3). This species, as well as **6**, reacts with $[Ph_3C][B(C_6F_5)_4]$ to abstract methyl or hydride, affording the borinium salt **19** (Scheme 3). This species was also characterized crystallographically.²⁰ The geometries of the cations of **17** and **19** are very similar, although in the latter case, lesser crystallographic symmetry is imposed, and thus, while a linear geometry at B is required, the geometry at N distorts slightly with a P–N–B angle of 162.1(3)°. The cation and anion in **19** are well-separated. The B–B distance is 10.43 Å.

Figure 8. POV-ray drawing of **21.** Color code: C, black; N, light blue; B, blue; F, pink; P, orange. H atoms are omitted for clarity. Selected distances (Å) and angles (deg): P(1)-N(1) 1.597(5), N(1)-B(1) 1.544(16), B(1)-N(1)-P(1) 136.9(5), B(1)-N(1)-P(1) 137.3(6), N(1)-B(1)-N(1) 94.2(8), F(1)-B(1)-F(1) 104.7(16).

In a similar fashion, abstraction of methyl or hydride from 18 or 6 with $[Ph_3C][PF_6]$ afforded the analogous salt 20 (Scheme 3). In contrast, while the analogous reaction of 18 or 6 with $[Ph_3C][BF_4]$ also affords Ph_3CMe or Ph_3CH , respectively, the new product 21 was isolated in these cases. The ¹¹B{¹H} NMR spectrum exhibited a single broad resonance at 11.8 ppm, and the ¹⁹F NMR spectrum showed a resonance at -75.5 ppm, inconsistent with the presence of a $[BF_4]^-$ anion. A crystallographic analysis of **21** revealed that **21** is correctly formulated as [*t*-Bu₃PNBF₂]₂ (Figure 8 and Scheme 3). Thus, the phosphinimide ligand bridges two BF_2 units. Crystallographic -3 symmetry is imposed, and thus disorder of BF₂ fragments is evident. As a result of this disorder, detailed comments on the metric parameters are inappropriate; however, the B-N bonds in 21 were found to be 1.544(16) Å, which is slightly elongated in comparison to 17 and 19. The formation of 21 presumably proceeds through a transient formation of the salt [(t-Bu₃PN)₂B][BF₄], which rapidly undergoes fluoride abstraction and ligand redistribution to form 21.

The NMR data for the salts 17 and 19 show a marked solvent dependence. The ³¹P NMR resonance for 17 shifts from 55.7 ppm in CD_2Cl_2 to 28.5 ppm in C_6D_6 , whereas the analogous signals for 19 are observed at 55.8 and 55.0 ppm, respectively. The addition of AlCl₃ to a benzene solution of 17 sequesters the chloride ion, forming [AlCl₄]⁻, and the ³¹P NMR resonance shifts from 28.5 to 55.8 ppm. These data infer that 17 forms a tight ion pair in nonpolar solvents, while in polar solvents, salvation of the ions results in ionpair separation. These results also suggest that the energy difference between a tight ion pair and the corresponding salt of 17 is small. This view is further supported by the observation that crystals of 17 in which ion-pair separation is confirmed crystallographically were grown from toluene. This suggests that, despite the ion pairing in solution, crystalpacking forces favor the salt. These views are also supported by theoretical predictions of the ³¹P NMR chemical shifts, as previously communicated.²⁰

DFT calculations were performed for the models $[(Me_3-PN)_2M]^+$ (M = B, Al) using the B3LYP/6-31g(d) basis set. These models were constructed based on the crystallographic data described herein for **14**. Geometry optimizations and molecular orbital calculations were performed. In both cases, the highest occupied molecular orbital (HOMO; Figure 9a,c)

⁽²⁸⁾ Mohlen, M.; Neumuller, B.; Pebler, J.; Dehnicke, K. Z. Anorg. Allg. Chem. 2001, 627, 1508.

⁽²⁹⁾ Mohlen, M.; Neumuller, B.; Dashti-Mommertz, A.; Muller, C.; Massa, W.; Dehnicke, K. Z. Anorg. Allg. Chem. 1999, 625, 1631.

⁽³⁰⁾ Mohlen, M.; Neumuller, B.; Harms, K.; Krautscheid, H.; Fenske, D.; Diedenhofen, M.; Frenking, G.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 1105.

⁽³¹⁾ Kölle, P.; Nöth, H. Chem. Rev. 1985, 85, 399.

Figure 9. Gaussview depictions of molecular orbitals for the model compounds $[(Me_3PN)_2M]^+$ (M = B, Al). M = B: (a) HOMO; (b) LUMO. M = Al: (c) HOMO; (d) LUMO.

is comprised primarily of the interaction of the N-based p orbital with the P-based d orbital. In the case of the B species, the lowest unoccupied molecular orbital (LUMO; Figure 9b) is comprised of a B-based p orbital mixed with an N–P π orbital. This is consistent with the delocalization of the formal positive charge over the entire P–N–B–N–P chain. In contrast, the LUMO for the hypothetical Al model is based primarily on an Al-based d orbital (Figure 9d). This localization of the positive charge on Al in this model is consistent with the observed propensity of aluminum phosphinimides for dimerization as well as the inability to experimentally synthesize a direct Al analogue of **14**.

Summary

The chemistry described herein presents several strategies for the formation of boron and aluminum phosphinimine and phosphinimide complexes. In general, sterically demanding phosphinimide ligands result in the formation of monomeric B species, whereas in the related Al compounds, the phosphinimide ligands bridge Al centers, resulting in dimeric products. The chemistry of main-group phosphinimides continues to be a subject of study in our laboratories.

Acknowledgment. Financial support from NSERC of Canada is gratefully acknowledged.

Supporting Information Available: Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0700351